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OPTIMAL DESIGN OF PLL WITH TWO SEPARATE PHASE DETECTORS

A. Heiman and Y. Bar-Ness

ABSTRACT: In order to improve the operation of phase locked

loops in both the acquisition and tracking modes , loops with two

phase detectors are considered .

The optimization problem of choosing the phase detectors in

order to minimize the variance of loop phase error is formulated.

The optimization problem is solved under several approximations.

Despite the approximation ,, the resulting nonlinearities can be

implemented and results in a PLL with improved performance in both

acquisition and tracking .
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1. Introduction.

In designing phase locked loop system (PLL) one is usually

faced with different requirements such as minimum phase error

variance , small acquisition time , maximum locking range , etc .

With the usual way of designing these systems one cannot adequately

cope with these different requirements and the total performance

often is not good enough.

In this paper , we will show that by adding another phase

detector the system can be provided with enough additional freedom

to be able to better deal with these conflicting requirements and

yield smaller errors. In order to find good forms for the phase

detectors we will use optimization theory. The detector function

which we obtain might not be strictly optimum , owing to several

approximations in the analysis which we are forced to make . Yet ,

as is clearly shown by our simulation , the resulting system is

superior to regular systems in current use. This study is believed

to be the first which exploit optimization theory in this way.

Owing to the use of additional phase detector , the problem

under consideration is one of (near) optimality designing a PLL with

two phase detectors. The equivalent model of such PLL is given in

Figure 1 and can be considered as a regular PLL (see Figure 2)

with H(p)g (~) being replaced by the sum H1(p)f(*) + H2 (p)f 1(+),

where H1(p) and 112(p) are linear filters. Such a split of the

phase detector and the loop filter is shown to be useful in

designing the system to perform well in both its acquisition and

tracking modes and hence has a superior performance.

Consequently, the design goal of the paper is to find the

phase detector functions f1($) and f($) that (approximately)
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minimizes the variance of the phase tracking error. Since the

analysis of this problem with general linear filters H1 (p) and

H2 (p), is quite complicated , only the second order case is
1-H

considered in this work: i.e., J11(p) = H0 and H2 (p) = _____

‘
p

Clearly when f1(~ ) = f (~) the system reduces to a standard

second order PLL . Hence , with two phase detectors , we obviously

have more freedom in the design. It is shown that our solution

involves the use of an extrc desi gn parameter (termed Ti). This

parameter enables the design of a PLL having minimum variance as

well as locking time smaller than some prescribed value.

In Section 2, the probability density function (p.d.f) p(~)

of the phase tracking error is derived as the solution of a

Fokker Planck equation. Simplified form of this function is obtained I

using some approximation and assumption . In Section 3, the

minimization problem is stated together with its appropriate

constraints and augmented performance index . The (approximately)

optimal phase detector functions which are the solution of the

related Euler equation are presented in Section 4, together with

the corresponding optimal p.d.f. Section 5 includes some remarks

on the optimal solution ; in particular , the effect of the design

parameter T1 on the system locking time . In Section 6, the optimal

phase detector function is firstly calculated and graph ica lly

presented for T1 = 0. Then for T1 ~ 0, we compute and present

graph ica lly the dependence of on the input signal to noise

ratio (SNR) and on the design parameter T1. Using simulation

results, the actual dependence of the locking time on this

parameter is also presented. This enables us to suggest a way of

designing an optimal system having a locking time smaller than

_ _  _ _
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certain prescribed value .

Since the optima l solution depends on the frequency error

between the incoming signal and the VCO output , it is plausible

to check the sensitivity of the optima l system to a change in this

frequency error. This is done by simulations from which it is

concluded that , with the frequency error unknown , it is best to

design for the maximum of its expected value .

Finally, in Section 7 practical implementation of the

phase detector function is suggested , using the first term of the

Fourier series expansion of the actual optimal functions.

Simulation results with the “sub-optimal” phase detector functions

justify the usefulness of proposed approximation .

2. System Equation and Tracking Error Probability Density Function

Consider the problem of selecting two phase detector func-

tions , f1(4’) and f($), such that the variance of the phase

tracking error

(1)

is minim ized where p(4’,f1(4’),f(4’)) is the probability density

function (p.d.f) of the error (modulo Zir) and ~ is the expected

value of 4’.

Following Lindsey (l~ and Viterbi (2~ in assuming that the

input filter bandwidth is much wider than the PLL bandwidth, we

have that Nf(t) and Nf Ct) of Figure 1 are zero mean white
1

Gauccian noises of spectral densities (one-sided) N0 and N01
respec tively. This assu~n~.ion enables the usage of the

- 78 12 11 115
_ _
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Fokker-Planck equation from whose solution the p.d .f of the error

p(~ ,f1(~),~~~)), can be obtained.

It is easy to deduce from Figure 1 that the system equation

is given by

1-H
= A 0 

- H0(AKf(cp ) 
+ KNf) 

- l+t 1p 
(AKf1(c~) + KNf1

) (2)

where we assumed that the input signal includes phase modulation

0(t) = A
0
t + 0

~~, A 0 is constant and A is the signal’s implitude.

Also , K = KvB where B is the amplitude of the voltage controlled

oscillator (VCO) output signal and is its gain in radian/sec/volt.

The loop filters are 111 (p) = H0 and H2(p) = (l-H 0)/(l+11p), where

p d/dt is the Heaviside operator.

To write the system equation in state space form , define

(1-H0)
~~ y1 

= - 

~~~~~~~ 

(AKf1(y0) + KNg] 
- (3)

and hence

• dy0fl—. A~ - H0AKf(y0) + y1 
- H0KNg(t) (4a)

dy1 y1 (l-H0)AKf1(y0) (l-H0)KNf1(t) (b)

Since Nf(t) and Nf (t) are white noise processes, the state
1

vector ~ — (y0,y1) is a two dimensional first order Markov

process, whose p.d.f. p(y0,y1) a Fokker-Planck satisfies

equation [11 . If p(y0,y1) is well defined then integrating the



S

equation with respect to y1 yields equation (5) for the marg inal

density,

~( r ( y0)p ( y0)) 32p(y0)
3y0 

+ = 0  — 1 T < y
0

< 7 .T (5)

where , 

y0

r(y0) 
= -4(A0-II0AKf(y0) 

+ E(y 1~ y 0) ) / U ~ K 2 N 0. (6)

The solution of (5) can be written as

() = coexp (~J
°r ( x)d x (Dc 1 J

[exp 
J

Z
r(x)dxJdz) (7)

where c1 can be obtained from the boundary condition p (n) =

p(~~1T) and c0 is a normalization factor . Notice that p(y0)

depends on the conditional expectation E(y1~y0) which requires

for its calculation the knowledge of p(y0,y1). In order to proceed

from this point it is necessary to make some approximation and we

will follow the approach used by Lindsey which approximated E(y1~y0)

by the right hand side of equation (8) and write

AK (l-H0)(f1(y0) - ?1)Sf (0)
E(y1~y0) — 

2T 
1 

- AK(1-H0)
’?
1 (8)

1°f1

where and are the mean and variance respectively of the
1

random variable f1(4’), and Sf (w) is the spectral density of the
1

random process (f 
~~~ 

- T1). Using equation (8) in (6) we obtain

after some algebraic manipulations

_  _  _ _ _ _  -—-~~~~~- .
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f~~~
x) dx = - aF ( ~~) + ~F 1(~ )/ ~~ -

where ,

dFdI~ 1 _
= 

~~~~~~~~~~~~~~~ ‘a~ 
-

= 4A/U 0 KN , = 2A(l-F10)Sf (0)/T 1N0H~K

and

AKH0 ~~ 
- AK(l-H0)T1(4)(l + ~H0/c~(l-H 0)t~~)J. (10)

In order to f a c i li t a t e  a so lu t ion  we need to make some

additional assumption . The restrictions to be imposed by these

assumptions will make physical sense. In fact, we will assume(4,
that f1(4,) and f(4,) are such that r(x)dx = 0 for all

4’ c (—n ,n]. This implies that c1 
= 0 and p(4’) is symmetric

and given by

p(4’) coexp [-J r(x)dxJ . (11)

Furthermore , to satisfy the condition on r(x), we wil l

assume (see equation (9)) that

8i~~~0

aF(4’) - BF (4’)/ci~ — ~F(-$) - BP1(-4’)/a~ . (12)1 1

—

~ 

,- _. • ‘
~~1~ ~~~~~~~~~ 

— -
~~~
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One way of satisfying equation (12) is to make F(4,) and F1(4,)

dF(4, dF1($)even functions. But , then , f(4,) = - 

d4’ ) and f1(4,) 
= - 

d4’

are odd and since p(4’) is symmetric , we have = 0. Hence,

equation (10) yields 8~ 
= aA /AKH0 and , therefore , with 81 

= 0

it is necessary to have A 0 
= 0. Since we do not intend to restrict

our problem to A0 
= 0, we will choose F(4,) and F1(4,) such

that their weighted sum ctF(4,) - 8F1(4’)/ci~ is an even function
1

and that 81 
= 0. It is shown in the sequel that this enables

us to treat the case of A0 ~ 0.

It is important to notice that in contrast to the standard

PLL case where the one phase detector function is usually chosen

as an odd function , in order to make p(4,) symmetric [l],[3J ,[4],

for the two phase detector case F’(4,) and F~ (cP ), are not odd .

In fact , when A 0 y~ 0, p(4,) is not symmetric with respect to the

steady-state error p ~ 0 for the standard PLL even though the

phase detector is an odd function. In view of this , the weighted

sum of the two detector functions is chosen to be an odd function

so as to ensure that p(4’) is symmetric even when A 0 ~ 0.

Finally, when equation (12) is satisfied ,

aF($)-F
p($) ~~.e (13)

where D* is a normalization constant. That is , p ($) depends on

, which itself depends on p(4’) by its definition . Hence, in
1

order tb obtain p(+) be well defined , we must first solve the
2• following simultaneous equations for

_ _ _ _  _  •
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c~F(4,)-8F (fl /a2

of = 
~~~~~

- ( (f1(4,) 
- e

1 i - i T  (14)

1 
uF(4,)- F1(fl/o~

11 = 
~
.w 

f
f1(fl e 1d4’.

The fact that p(4’) depends on a~ complicates the
2 1

search of the minimum of O~, which will be discussed in the next

section . Furthermore , 8 depends on Sf (0) and since the latter
1

cannot be explicitly calculated , a heuristic approach (see Section 5)

is used to argue that Sf (0) is almost independent of f1(4,)1
and hence that 8 is approximately a constant . This is supported

by simulation results .

3. The Minimization Problem

The problem is to find f(p) and f1(4,) so as to have

minimum value for

c ip (4 , ) - BF (fl/a2

~w e d4’ (15)

dF
where, f(+) — - , f1($) — - . Since p($) in equation (13)

was obtained using the conditions of equation (12) the optimal

problem must satisfy the constraints

— 
AXlE [A 0 

- AK (1-H0)T1 (1 + 
0 

— 0 (.16)
0 CI(l-140)CJ f1
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- 8F 1(4’)/a~ = ~F(-4,) - 8F1(-4’)/.1~ 
- i T  < 4, it (17)

1 
~

~~ J e  dy = 1. (18)

The value of o~ is obtained from equation (14).
1

It is possible to show , using equations (16), (12) and the

symmetry of p(4’) that

A
(l-H0)r~ + H0r’ 

= - (19)

This requirement on the phase detector functions will prove to be

of great importance in the system acquisition mode. In fact ,

t >>  one may deduce from equation (3) that F~ (4’) is stationary

and is constant and

• 
- = (l-H 0)AKP~(4’). (20)

Now averaging equation (4a) and using 4’ = y0, we get

A0 + H0AKV’(4’) + 
~
1. (21)

Substituting equation (20) in equation (21) and using equation (19)

we end up having 0 regardless of the value of A0. This

means that by satisfying condition (19) the system ends up locking for

any it0 and the acquisition range of this general PLL is infinite.
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This is certainly not the case for the standard second order

PLL where the acquisition range is limited and depends i’n H0 (11.

• To conclude this discussion , we notice that equation (19)

can be written as

A iT
- = 

~j~’ J [H0F’(4,) 
+ (l-U 0)F~ (4,)]cxp (czF(4,) - 8F 1 (fl/a~~)dq’ (22)

which is equivalent to equation (16). This together with equations

(17) and (18) form the constraints of the optimization problem.

Using Lagrange multi pliers , the augmented performance index

associated with this problem is given by

ii A c x F (~ )-

J [4,2 + X
1 (H ØF (4,) 

+ (1-H 0)F~ (4’) 
+ ~~)Je 

1
- 

fl (23)

J exp [C~F(4’) - 8F 1(fl/a~-11 1

where A is the multiplier and the value of a~ is given by1 1

= 
~ r J ( fj (4i ) - ~~)

2exp(ctF(4’) - 8F1(+)/a~~Jd4’ (24a)

A H 8
i~j = - where a = (1-H 0) + . (24b)

fi

Although the constraint (17) has not been explicitly considered in

deriving equation (23), it can be shown that it is satisfied in the

optimal solution .

Because of shortage of space, we wil l not write the Euler

a-  - 
~~~~~~~ 

-- • _ .- -
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equaton which F(4,) and F1(4,) must satisfy, (for full detail

see [3]), and we only mention the boundary condition that these

functions must satisfy :

F 1
(IT ) - F1

(- i t )  ~ T1, F’ ( IT )  = F ’ ( - l r ) .  (25)

For standard PLL , T1 
= 0, while with the two phase detector PLL ,

we can choose T1 arbitrarily. This adds a degree of freedom which

will prove to have an i~portant effect on the locking time . Therefore ,

we can design the system for minimum variance a~ and simultaneously

put some requirements on the locking time .

4. The Optima l Phase Detector Function

The system Euler equations are second order differential

equations. However , since we are interested only in F’(~4,) and

we need to solve first order equations only. From this we

can obtain the two optimal phase detector functions

F~(4’.) - T~j = 
(T1/

21T 
H08/ct 

[-1 + .I$I~ 42 + 1t2/sinihi (.26)

• and

a-DR
F’(4’) = 

H F~ (4’) - 

2 2 (27)
0 4’ +1T /sinh x

which depend on the system parameters as well as on the parameters

a and x. These parameters are the simultaneous solution of the

two nonlinear equations ,

_ _ _ _ _  
_ •
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T /211 A
~ (T~ /2  + A 0/AKa) 

= (a-lil t0) ~xcothx 
+ (28)

-2(1 + 
(T
1/ 2n  + A 0/AKa)

2(a-l+H 0)c~ Siflh 
+ 

sinh2x 
+ 1 = 0. (29)

The phase detector functions are (approximately) optimal in the

sense of minimizing a~ 
‘and -, 0 for every A 0.

Also , the corres~onding p.d.f. is

p(4’) 2
1 1 

— , (30)lx i  ‘2 2
+ it /sinh x

and the corresponding variance is

021 = co~hx - 
1 (314’ mm -r ~ x s inh2x

Notice that many values of x solve equation (28) and (29) each

one corresponding to a local minimum . From Figure 3, it is clear

that O
~ I min decreases as x increases. The global minimum will

correspond to the highest value x that solve these equations.

5. Remarks on the Optimal Solution

(1) Substituting equation (27) in equation (2) we have

for the sys tem equation

l+t p
— A 0 

- HoA Kf D($) - 1+r~p 
a AKf 1(4’) - H0KN* (32)

- — ~~~~~~~~~ ~~~~~~~~~
---- .-

~~
.• - • . w~~~~~~~

_ • . . 
— . _ —-

~
.-— —- • .- -• ‘ - • -  - • - —
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where N* = Nf 
+ Nf (l-H0)/110(

l+T
1p); ‘~~ = 

~1. 
+ ‘2

- 
4,/ct

4 +1t /sinh x

and

A0 H 8/ ct 2 2 2
= - 

~~~ 
+ A0IAKa) (a-l+H 0) E l  + ~ 4 +1T /sinh xJ. (34)

The model of the system that corresponds to these equations is given

in Figure 4, where we notice that channel 1 is controlled by an

odd phase detector function 
~D~

4,
~ ’ 

while channel 2 is controlled

by an even phase detector function For small 4, we have

f (4’) ad where ad 
= sinh2x/1T2c1 and f 1(4’) const. That is

channel 2 does not respond to small changes in 4’ and the system

behaves as a first order PLL . Noticing that the phase detector

slope ad is very large for reasonable value of x, our results

resemble similar ones obtained by Stiffler [4] and Shaft (51 ,

namely, the phase detector function that causes a first order PLL

system to have minimum o~ is sgn(sin a). However , with large

or PLL unlocked , the system acts as a second order PLL.

(2) Clearly the optimal solution depends on the ratio

t/B (see equation (29) which itself depends on Sf (0) (see
1

equation (9)). It is reasonable to assume that the ratio of

the noise bandwidths of the stochastic processes 4(t) and

f1(4’) 
- ?i(4’) is proportional to the ratio of their variances

and a~ . In this ca se, one can show that Sf(0) is
1 2approximately given by nN0/2A , where ri is the proportionality

constant. (Notice that for the regular PLL (i.e. f1(4’) • f(4’) • sin •)

--- w-~ -~
. 

~~~~~~~~~~~~~~~ —•- . -—•- 
—-

~~~~~~~~
--- - - - —  — — ------ 

~

----—---—
:-
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N
Viterbi (2] and Lindsey (11 estimated Sf(O) by a— .) Using

2
this estimate for Sf(0) we have

8/ct = 

l4I~ 
____  . (35)

That is 8/ct depends on the noise to signal ratio of the input.

(3) Notice that the optima l solution (see equations 1~8)

and (29)) depends on the parameter Tl~ 
Recalling that this para-

meter (see equation (25)) must vanish for the standard PLL. To

show the effect of T1 on the locking time ; we use the Fourier

series expansion of f1(4,) in equation (32) to get

(1+t~p)a AKT1
= [A0 + I - IIoAKfD(4)

(l+9p)a
- AK 

~~~~ 
- H0KN* (36)

where we also used the fact that the first term of this series

is a = l/2it J f (4,)dl’ — -T /2 1T , and g a cos n4,. This
n 1  n

equation represents a system similar to that of Figure 4 but with

the two phase detector functions and 
~~~~ 

for channel 1

and channel 2 respectively, and equivalent input signal with

phase modulation

1 (1+t~p)
— 

~

;. (A 0 + 1+t 1p 
AKaT1/2flJ . (37)

For t >> T~, we have for the equivalent frequency input

— -—
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dO (t) aT 1/2 1T
_______  = A~ (l + A 0/AK 

)~ (38)

Since the locking time of a PLL depends on the incoming signal

frequency, 11 obviously affects this time .

6. Computational Results and Simulation

As it was shown in the previous section , the two optimal

phase detector functions f($) and f1(4,) depend on the solution

of the nonlinear equations (28) and (29). Except for 11 = 0,

an analytic solution is difficult to obtain and hence a numerical

solution is obtained.

In fact for 11 = 0, it is possible ..to show that the desired

solution to these nonlinear equations is

a 2(1-H0) 
(39)

• and

(A 0AK) ~cz
X 2(1-H0)H08 

X >> 1. . (40)

In this case, we also have

2 ,~
2 (1-H 0)H08/ct— T (A 0/AK) 2 

(41)

No tice tha t O
~~(mjfl 

decreases as !t0/AK increases , a result wh ich

seems unreasonable. However, using the loop equation (32), we can

have

~~~~~~
• 

•

— •, - — 
~

• .• — . — — 

~~~~~~ 

- - - — -  — - - —  .

~~
~—
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A 4(l-110)H 08/ct
~K 

= - — A /AK . (42)

That is , Aeff/AK decreases as A Ø/AK increases , and the

dependence of a~ on A 0/AK is justified .

With the values of a and x from equations (40) and (41.)

the optima l phase detector functions of equations (33) and (34) are

presented in Figures 5 and 6. The corresponding optimal p.d .f

of equation (30) is given in Figure 7.

For T~ ~ 0 computer search can be used in solving

equations (28) and (29). As a numerical example consider in

Figure 8, °4Jmjn as a function of ct/8, (which depends on S/N,

equation 35) with system parameters r = 2, H0 
= 0.02, T1 

= 0.03

and for A 0/AK 
= 0.12 and 0.08. Notice that for a fixed ct/8,

decreases as increases , similar to what we had for T1 
= 0.

In Figure 9, C
~ i min as a function of T1 is presented with system

parameters ct/8 = 3, r = 2, H0 
= 0.01 and for A0/AK 

= 0.12 and

0.08. Notice that for a fixed c*/$,a2 decreases as T1 increases.

The theoretical results obtained in the previous sections assumed

that Sf (0) is prac tica lly independen t of f 1(4,) (see Remark 21
of Section 5). If this assumption is true , then n should be in-

dependen t of f1(i~) .  Thu s, to justify this approximation ,

Figure 9 includes simu lat ion re sul ts of as a func tion of T~,

with A 0/AK — 0.08 and 0.12, and for n — 0.08. Although this

value of n was obtained for a single point on the curve , the small

difference along the curve between this simulation and the previously

computed results do support the assumption .

In Figure 10, simulatioit results of the locking time as a

• - 
_________ - 

— 
— — - •. —- . . . - .
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function of 11 in a noise free system are presented. The

simulation performed for optimal system whose parameters are
A

r = 2, 11 o = 0.01 = 0.12 and u/8 = 3. Locking time was

defined to be the time for the system to reach < l0~~ .

Notice that the locking time has minimum value. Therefore the

design goal could be to select 11 to have the largest value

which still satisfies , according to Figure 10, the locking time

requirement (i.e., locking time < tmax )• It should be emphasized

that with the regular PLL , T1 is necessaril y zero and there is

no extra freedom in selecting the locking time for a given A 0/AK.

Previously, the assumption that A0 is known was used.

This is not true , in practice. Hence , it is important to discuss

the behaviour of a system , optimally designed to track A~, when

it is actually tracking A0 ~ A~ . That is , to find of a system

having phase detector functions f~(4,) and f*(4,). It is

practically impossible to establish analytically the p.d.f. p(4,)

of this case. Instead , at/ar as a function of A 0/A~ was calculated

• numerically. The results are depicted in Figures 11 and 12, from

which it is noted that a~2/a~* is not symmetric with respect to

= 1. It increases for A0/A~ < 1 much faster than for

• A Q/A~ < 1. In view of this, we may conclude tha t for A0/AK no t

known a priori , it is reasonable to design the system for the

maximal expected incoming frequency error. 
*

7. Practical Implementation of the Optimal Phase Detector

Instead of the optimal forms of the functions given on

equations (33) and (34) or Figures 5 and 6, it is s~ggested that

:::~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~k
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I

the first term of their Fourier expansions be used , i.e.,

b1sin 4 and f1(4,) ~~ + a1cos 4, , where b1, a0 and a1
are the Fourier coefficients. To examine this approximation ,

Figure 13 compares the dependence of on T~ of this system

with that of the optima l one . It is noted that with this sub-optimal

system , the variance of th~. phase error is not much larger than

that of the optimal one , which justifies the usefulness of using

these easy to implement phase detector functions. Figure 14

presents a block diagram of such imp lementation.
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Legends

Figure 1. Model of the PLL with two phase detectors

Figure 2. Model of standard PLL
2Figure 3. a4,l min as a function of x

Figure 4. Simp lified model of second order PLL with two phase
detector functions

Figure 5. The optimal phase detector f1(4) ~.ith 11 
= 0

Figure 6. The optimal phase detector 
~~~~ 

with T1 
= 0

Figure 7. The optimal probability density function p(4) with
T1 

= 0

Figure 8. 
~~‘min as a function of c*/8 (SNR) , T~ ~ 0

Figure 9. Simulation and theoretical re~1.!lts of c7
~ l min

as a function of T1

Figure 10. Locking time as a function of T1 in a noise free system ,
using simulation

Figure 11. a~/ar as a funct-on of

Figure 12. c
~,~/ar 

as a function of

Figure 13. Comparing as a function of T1 for the optimal
system with a system whose phase detector functions
are 

~~~~ 
= b1sin 4’ , f1(*) 

= a0 + a1cos 4,

Figure 14. The sub-optimal system
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